Jump to content
IGNORED

zanimljiva matematika


kurdi

Recommended Posts

Posted (edited)
post-307-1219969755.jpgČuvena trka na 100 metara sa Olimpijskih igara u Pekingu poslužila je profesorima fizike sa Elektrotehničkog fakulteta u Beogradu da osmisle interesantan zadatak.Studenti su morali da utvrde koje bi vreme postigao Jamajčanin Usein Bolt da je trčao maksimalnom brzinom do cilja.Zadatak i rešenje možete videti na http://nobel.etf.bg.ac.yu/studiranje/kurse...sep2008_res.pdf Edited by Quizmaster
Posted (edited)

edit: nepotrebno, ispravio qm link.edit2: u jebem ti, ovo je ispit :ph34r:

Edited by kurdi
Posted

Kurs: Probability&StatisticsSession 1Secretary ProblemE neka je i mene usralo..

Posted

haha, koji kontrast u odnosu na usaina iznad :lol:sada mi se zapravo cini da se to standardno pojavljuje na svakom ozbiljnijem kursu, ali cekaj sad me interesuje - jel se ocekuje da sva deca uspeju sama da rese ili vam oni pokazu?sad ces imati izvor zanimljivih zadataka za prenosenje...

Posted

zapravo, bilo je ovakothis is the classical concept of probability. let's do an example. it's called secretary problem...mislim da bi on sam uradio da ja nisam lisa simpson. ne verujem da se ocekuje, jer je ostatak grupe bio u zbunu...mozda bi trebalo da mu uletim rektalno i da ga pitam za misljenje povodom onog priora iz zadatka sa autobusima. ionako mi se nakacio do kraja casa..

Posted
mislim da bi on sam uradio da ja nisam lisa simpson.
trebalo bi da se upoznas sa betty.
ne verujem da se ocekuje, jer je ostatak grupe bio u zbunu...
ok, to zvuci realnije.
mozda bi trebalo da mu uletim rektalno i da ga pitam za misljenje povodom onog priora iz zadatka sa autobusima.
pa mozes...mozes u principu i da ga pitas da resi zadatak sa 100 koverata, al to bi mozda vec bilo malo varanje.
Posted
trebalo bi da se upoznas sa betty.
:D vec jesamAss. Prof. je smejurija. Sav je uglacan i nabildovan i sve ga mrzi da objasnjava medjukorake. Mislim da zasluzuje da ga izvortam na koverte ili autobuse.
Posted
trebalo bi da se upoznas sa betty.
klevete i lazi angry.gif
Posted

pokusavam da smislim bilo sta posto dugo nista nije bilo... i nista pametno mi ne pada na pamet.pa aj bar nesto srednjoskolski (ili osnovnoskolski? nisam sad siguran), mozda bar nekome bude zabavno da se igra...u cast jubilarne 29-e strane:dokazati da je 27^28 - 1 deljivo sa 29.ovo zapravo direktno sledi iz tzv. male fermat-ove teoreme, ali trazi se dokaz bez poziva na nju (mislim moze i da se dokaze teorema, al to je teze).moze prilicno dzukacki da se uradi, uz par lema, ali mozda postoji i elegentani dokaz koji meni trenutno ne pada na pamet.kalkulator (osim sto se ne vazi) mislim da ne pomaze, makar ne ovaj u windowsu, a ni onaj u googlu.

Posted (edited)

27 = 29-2Lako se pokazuje da je 27k oblika 29*x+(-1)k*2k.Znači zadatak se svodi na to da se pokaže da je 228-1 deljivo sa 29.To mu dođe 216*212-1, odnosno, kao što će ti svaki softveraš reći iz topa, 65536*4096-1, pa može i bez digitrona da se lako izmnoži... :PA potom podeli sa 29 (opet bez digitrona, jakako... što je mene mrzelo, te sam varanjem pomoću digitrona dobio rezultat 9256395, tj. ceo broj)

Edited by Al-Khwarizmi
Posted (edited)

Još jedan srednjoškolski, prilično lagan:U nekoj dalekoj zemlji tradicionalno se koriste školjke kao sredstvo plaćanja. Ništa ne košta ispod 10 školjki. Vlada je donela odluku da se uvede i papirna valuta, koja bi se za početak sastojala od samo dve novčanice u vrednosti od m i n školjki.Koje su moguće vrednosti m i n?edit: tako da bude moguće sve platiti papirnim novcem, naravno...

Edited by Al-Khwarizmi
Posted

Mislis, sve moguce parove (m,n) treba navesti?Inace, stigao upravo domaci iz P&S sa 5 zadataka. Prva dva su sa cerkom Marijom a peti je varijacija na zadatak sa ponudom da promenis izbor koverte nakon sto si od tri odabrao pogresnu..

Posted
Još jedan srednjoškolski, prilično lagan:U nekoj dalekoj zemlji tradicionalno se koriste školjke kao sredstvo plaćanja. Ništa ne košta ispod 10 školjki. Vlada je donela odluku da se uvede i papirna valuta, koja bi se za početak sastojala od samo dve novčanice u vrednosti od m i n školjki.Koje su moguće vrednosti m i n?edit: tako da bude moguće sve platiti papirnim novcem, naravno...
m = 10n = bilo staTako da ima beskonacno resenja.
Posted
27 = 29-2Lako se pokazuje da je 27k oblika 29*x+(-1)k*2k.Znači zadatak se svodi na to da se pokaže da je 228-1 deljivo sa 29.To mu dođe 216*212-1, odnosno, kao što će ti svaki softveraš reći iz topa, 65536*4096-1, pa može i bez digitrona da se lako izmnoži... :PA potom podeli sa 29 (opet bez digitrona, jakako... što je mene mrzelo, te sam varanjem pomoću digitrona dobio rezultat 9256395, tj. ceo broj)
Naravno da je to 228-1, to je čovek implicitno rekao i u postavci zadatka.Drugo rešenje:1. 228-1==(25)5*8-1ovo je identičnim putem kongruentno sa 35*8-1 po modulu 292. 35*8-1==33*9*8-1ovo je identičnim putem kongruentno sa -2*9*8-1 po modulu 293. -2*9*8-1=-145=-29*5 što je konkruentno sa 0 po modulu 29. Zadatak rešen.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...