No7 Posted March 8, 2010 Posted March 8, 2010 (edited) Има ли математичара овде?Неки мали увод. Филдсова медаља се додељује на сваке 4 године за остварене научне пробоје у математици. Фондацију је основао канадски математичар Џон Чарлс Филдс а први пут је додељена 1936. године. Од 1950. године редовно се додељује на сваке четири године.Лета господњег 2010. године ће у Хајдерабаду, Индија бити 17 пут додељена.На додели Филдсове медаље 2006. десио се занимљив случај. Григориј Перељман из Русије је одбио да прими награду и новац за њу иако је решио један од Миленијумских проблема у математици, решио је Поенкарову хипотезу. То је 2006. у часопису Science проглашено за пробој године у области целе науке, то је било први пут у историји да се тако нешто десило тј. да је неки рад из области математике проглашен за пробој године.Али није само то чудно него се човек после решавања једног од највећих проблема у историји повукао тотално из математике. Уз коментар, Although Perelman says in a The New Yorker article that he is disappointed with the ethical standards of the field of mathematics, the article implies that Perelman refers particularly to Yau's efforts to downplay Perelman's role in the proof and play up the work of Cao and Zhu. Perelman has said that "I can't say I'm outraged. Other people do worse. Of course, there are many mathematicians who are more or less honest. But almost all of them are conformists. They are more or less honest, but they tolerate those who are not honest." He has also said that "It is not people who break ethical standards who are regarded as aliens. It is people like me who are isolated."Насловна Science-а,http://en.wikipedia.org/wiki/Poincar%C3%A9_conjectureУзгред ко хоће да се обогати ево му прилике. Миленијумски проблеми, ко реши 1 милион $ добије.http://www.ams.org/notices/200606/fea-jaffe.pdfДа видимо зна ли неко ко би могао добити ове године тј. ко су највећи фаворити и за шта. Прошлих пар додела доминирали су Руси или пореклом Руси.Видим да је Абелаову за 2009. годину добио Рус Михаил Громов а Волфову за 2010. Кинез-Амер Шинг-Тунг Јау и Амер Денис Саливан. Али то не мора ништа да значи. Edited March 8, 2010 by No7
SleeperSleep Posted March 8, 2010 Posted March 8, 2010 ja mislim da je ovo jos jedan dokaz da su rusi u svemu superiorni u odnosu na ostale nacije.
No7 Posted March 9, 2010 Author Posted March 9, 2010 Мислиш да је Перељман етнички Рус? Један од могућих добитника је Вијетнамац Нго Бау Чау, млад момак што му повећава шансе за Филдсову медаљу.Он је доказао Фундаменталну лему, област математике аутоморфне форме а ова форма је повезана са модуларном формом тј. комплексном анализом а то би већ требали да знају сви инжењери и физичари, нарочито ако се помене Лапласова једначина. То је у магазину Time проглашено за једно од Топ 10 научних открића током 2009. године.
No7 Posted August 23, 2010 Author Posted August 23, 2010 Добитници за 2010 годину,1.Stanislav Smirnov Stanislav Smirnov is being awarded the 2010 Fields medal for the proof of conformal invariance of percolation and the planar Ising model in statistical physics. Stanislav Smirnov was born in 1970 in St. Petersburg, Russia. He attended the 239th mathematical school and St. Petersburg State University where he studied mathematical analysis with Viktor Havin.Опширније око његовог рада за који је награђен: It was predicted in the 1990’s, and used in many studies, that the scaling limit of various two dimensional models in statistical physics has an unexpected symmetry, namely it is conformally invariant. Smirnov was the first to prove this rigorously for two important cases, percolation on the triangular lattice and the planar Ising model. The proof is elegant and it is based on extremely insightful combinatorial arguments. Smirnov’s work gave the solid foundation for important methods in statistical physics like Cardy’s Formula, and provided an all-important missing step in the theory of Schramm-Loewner Evolution in the scaling limit of various processes. 2.Elon LindenstraussElon Lindenstrauss is being awarded the 2010 Fields Medal for his results on measure rigidity in ergodic theory, and their applications to number theory. Born in Jerusalem, 1970. B.Sc. in Mathematics and Physics, The Hebrew University of Jerusalem, Israel, 1991.Опширније око његовог рада за који је награђен: Lindenstrauss has made far-reaching advances in ergodic theory, the study of measure preserving transformations. His work on a conjecture of Furstenberg and Margulis concerning the measure rigidity of higher rank diagonal actions in homogeneous spaces has led to striking applications. Specifically, jointly with Einsiedler and Katok, he established the conjecture under a further hypothesis of positive entropy. It has impressive applications to the classical Littlewood Conjecture in the theory of diophantine approximation. Developing these as well other powerful ergodic theoretic and arithmetical ideas, Lindenstrauss resolved the arithmetic quantum unique ergodicity conjecture of Rudnick and Sarnak in the theory of modular forms. He and his collaborators have found many other unexpected applications of these ergodic theoretic techniques in problems in classical number theory. His work is exceptionally deep and its impact goes far beyond ergodic theory. 3.Ngô Bảo ChâuNgô Bảo Châu is being awarded the 2010 Fields Medal for for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. Ngô Bảo Châu was born on June 28, 1972, in Hanoi, Vietnam. After secondary school in Vietnam, he moved to France and studied at the Université Paris 6, Ecole Normale Supérieure de Paris. Опширније око његовог рада за који је награђен: In the 1960’s and 70’s Robert Langlands formulated various basic unifying principles and conjectures relating automorphic forms on different groups, Galois representations and L-functions. These led to what today is referred to as the Langlands programme. The main tool in establishing some cases of these conjectures is the trace formula and in applying it for the above purposes a central difficulty intervenes: to establish some natural identities in harmonic analysis on local groups as well as ones connected to arithmetic geometric objects. This problem became known as the Fundamental Lemma. After many advances by a number of researchers in 2004, Laumon and Ngô established the Fundamental Lemma for a special family of groups, and recently Ngô established the Lemma in general.Ngô’s brilliant proof of this important long standing conjecture is based in part on the introduction of novel geometric objects and techniques into this sophisticated analysis. His achievement, which lies at the crossroads between algebraic geometry, group theory and automorphic forms, is leading to many striking advances in the Langlands programme as well as the subjects linked with it. 4.Cédric VillaniCédric Villani is being awarded the 2010 Fields Medal for his proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann equation. Cédric Villani was born in 1973 in France. After studying mathematics at École Normale Supérieure in Paris from 1992 to 1996, he was appointed assistant professor there. Опширније око његовог рада за који је награђен: One of the fundamental and initially very controversial theories of classical physics is Boltzmann’s kinetic theory of gases. Instead of tracking the individual motion of billions of individual atoms it studies the evolution of the probability that a particle occupies a certain position and has a certain velocity. The equilibrium probability distributions are well known for more than a hundred years, but to understand whether and how fast convergence to equilibrium occurs has been very difficult. Villani (in collaboration with Desvillettes) obtained the first result on the convergence rate for initial data not close to equilibrium. Later in joint work with his student Mouhot he rigorously established the so-called non-linear Landau damping for the kinetic equations of plasma physics, settling a long-standing debate. He has been one of the pioneers in the applications of optimal transport theory to geometric and functional inequalities. He wrote a very timely and accurate book on mass transport.
Ryan Franco Posted August 24, 2010 Posted August 24, 2010 "you're just jelauose. it's because of my fields medal""yeah right, look at my fuckin fiiields medal!"
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now